Biorelevant $\mathrm{p} K_{\mathrm{a}}\left(37^{\circ} \mathrm{C}\right)$ predicted from the 2 D structure of the molecule and its $\mathrm{p} K_{\mathrm{a}}$ at $25^{\circ} \mathrm{C}$

Na Sun**, Alex Avdeef*
pION INC, 5 Constitution Way, Woburn, MA 01801, USA

A R T I C L E I N F O

Article history:

Received 31 January 2011
Received in revised form 9 May 2011
Accepted 10 May 2011
Available online 17 May 2011

Keywords:

Ionization constant
$\mathrm{p} K_{\mathrm{a}}$
Abraham's descriptors
Biorelevant media
Linear free energy relationships

Abstract

Values of the ionization constants at $37^{\circ} \mathrm{C}$, which are scarcely reported, are more meaningful for interpreting mechanisms of cellular transport by ionizable molecules and in mechanistic dissolution studies, which are often performed at the biorelevant temperature. An equation was developed where the $\mathrm{p} K_{\mathrm{a}}$ values of drug-like molecules determined at $25^{\circ} \mathrm{C}$ can be simply converted to values at $37^{\circ} \mathrm{C}$, without additional measurement. The differences between the values, $\Delta \mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{37}-\mathrm{p} K_{\mathrm{a}}^{25}$, were linearly fitted to a function of $\mathrm{p} K_{\mathrm{a}}^{25}$ and the standard entropy of ionization, ΔS°, where the latter term was approximated by the five Abraham linear free energy solvation descriptors using multiple linear regression. The Abraham descriptors (H-bond donor and acceptor strengths, dipolar solute-solvent interactions potential, the pi- and n-electrons dispersion force, and molar volume) were determined from the 2-dimensional structure of the molecules. A total of 143 mostly drug-like molecules ($207 \mathrm{p} K_{\mathrm{a}}$ values at $25^{\circ} \mathrm{C}$ and at $37^{\circ} \mathrm{C}$) were chosen for the study. The $\mathrm{p} K_{\mathrm{a}}$ values of many were determined here for the first time. Included were 34 weak acids, 85 weak bases, and 24 amphoteric compounds (6 ordinary ampholytes, 18 zwitterions).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The measurement of physicochemical properties of active pharmaceutical ingredients (API) is critical to pharmaceutical development. The ionization constant, $\mathrm{p} K_{\mathrm{a}}$, is one of the most important of such properties for ionizable API. The value of the $\mathrm{p} K_{\mathrm{a}}$ can affect the solubility, dissolution rate, absorption across biological membranes, distribution to the site of action, renal elimination, metabolism, protein binding, and receptor interactions [1]. Several methods to determine $\mathrm{p} K_{\mathrm{a}}$ values and the control of the experimental details to achieve the maximum precision and accuracy have been described previously in the literature [2-8]. The focus of this paper is to predict the effect of temperature on $\mathrm{p} K_{\mathrm{a}}$ from the knowledge 2-dimensional (2D) structure of the molecule and its determined $\mathrm{p} K_{\mathrm{a}}$ at $25^{\circ} \mathrm{C}$.

The ionization constant is a thermodynamic parameter [9-11], which depends on temperature. The pharmacokinetics of the API (including absorption, distribution, metabolism, elimination, and toxicity, i.e., ADMET) are evaluated at the physiological relevant temperature of $37^{\circ} \mathrm{C}$. However, $\mathrm{p} K_{\mathrm{a}}$ values needed to interpret certain biological mechanisms are most often available only from lower temperature determinations. The majority of the published

[^0]$\mathrm{p} K_{\mathrm{a}}$ values are determined at 'room temperature,' sometimes without ionic strength adjustor $[6,12-16]$. The most reliable results come from laboratories where the $\mathrm{p} K_{\mathrm{a}}$ is determined under standard conditions, i.e., in thermostated $25^{\circ} \mathrm{C}$ solutions containing a background electrolyte (e.g., 0.15 M KCl), with special care given to calibrating the pH electrode. Of the published $\mathrm{p} K_{\mathrm{a}}$ values of druglike molecules, scarcely any are reported at $37^{\circ} \mathrm{C}$.

The effect of temperature on $\mathrm{p} K_{\mathrm{a}}$ depends on the nature of the functional group. Simple carboxylic acid-containing drugs have nearly the same $\mathrm{p} K_{\mathrm{a}}$ at 25 and $37^{\circ} \mathrm{C}$ [4,17-19], whereas simple bases usually have a decreased $\mathrm{p} K_{\mathrm{a}}$ at the biorelevant temperature $\left(\Delta \mathrm{p} K_{\mathrm{a}} / \Delta T \approx-0.03{ }^{\circ} \mathrm{C}^{-1}\right)[2-5,8]$ (e.g., propranolol has the $\mathrm{p} K_{\mathrm{a}}$ values 9.53 and 9.17 at 25 and $37^{\circ} \mathrm{C}$, respectively). Neglecting the temperature effect can lead to inaccurate interpretations of pharmacokinetic mechanisms of ionizable drugs, and potentially contributing to poorer in vitro-in vivo correlations (IVIVC).

In this study we have devised a simple procedure which allows the prediction of the $\mathrm{p} K_{\mathrm{a}}$ value at $37^{\circ} \mathrm{C}$, provided the value at $25^{\circ} \mathrm{C}$ is known. The differences between the values, $\Delta \mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{37}-\mathrm{p} K_{\mathrm{a}}^{25}$, were linearly fitted to a function of $\mathrm{p} K_{\mathrm{a}}^{25}$ and the standard entropy of ionization, ΔS°, where the latter term was approximated by the five Abraham [20] linear free energy relationship (LFER) solvation descriptors using multiple linear regression (MLR). The Abraham descriptors (H-bond donor and acceptor strengths, dipolar solute-solvent interactions potential, the pi- and n-electrons dispersion force, and molar volume) were estimated from the 2D structure of the molecules [38]. A total of 143 mostly drug-like

Nomenclature

MLR	multiple linear regression
LFER	linear free energy relationships
R_{2}	Abraham descriptor - excess molar refraction $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} / 10\right)$; which models dispersion force interaction arising from pi- and n-electrons of the solute (also called E)
V_{x}	Abraham descriptor - McGowan molar volume $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} / 100\right)$ of the solute
$\mathrm{p} K_{\mathrm{a}}$	negative log, base 10 , of the 'concentration' ionization constant (constant ionic medium reference state, 0.15 M KCl$)$
$\mathrm{p}_{\mathrm{s}} K_{\mathrm{a}}$	mixed-solvent $\mathrm{p} K_{\mathrm{a}}$ (constant ionic medium reference state, 0.15 M KCl)
\bar{n}_{H}	Bjerrum function - the average number of bound protons on an ionizable molecule at a particular pH

Greek letters

$\Delta \mathrm{p} K_{\mathrm{a}} \quad$ shift in the $\mathrm{p} K_{\mathrm{a}}$ on raising the temperature from 25 to $37^{\circ} \mathrm{C}: \Delta \mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{37}-\mathrm{p} K_{\mathrm{a}}^{25}$,
$\Sigma \alpha_{2}^{\mathrm{H}} \quad$ Abraham descriptor - solute H -bond total acidity (also called A)
$\Sigma \beta_{2}^{\mathrm{H}} \quad$ Abraham descriptor - solute H -bond total basicity (also called B)
$\pi_{2} \quad$ Abraham descriptor - solute polarity/polarizability due to solute-solvent interactions between bond dipoles and induced dipoles (also called S)
molecules (207 $\mathrm{p} K_{\mathrm{a}}$ values at $25^{\circ} \mathrm{C}$ and at $37^{\circ} \mathrm{C}$) were chosen. The $\mathrm{p} K_{\mathrm{a}}$ values of many were determined here for the first time. Included were 34 weak acids, 85 weak bases, and 24 amphoteric compounds (6 ordinary ampholytes, 18 zwitterions).

2. Materials and methods

2.1. Chemicals and materials

Methanol, 1-propanol, and dimethylsulfoxide DMSO (all HPLC purity grade) were purchased from Sigma-Aldrich/RBI (St. Louis, MO, USA). Reverse osmosis de-ionized water (" 18Ω " grade) was used. The drugs whose $\mathrm{p} K_{\mathrm{a}}$ values were measured here, including astemizole, carvedilol, chloroquine diphosphate, codeine, diphenhydramine, domperidone, gabapentin, guanabenz acetate, maprotiline hydrochloride, melphalan, omeprazole, oxycodone hydrochloride, pergolide mesylate, perphenazine, pyrilamine mesylate, thioridazine hydrochloride, vinblastine sulfate, and vincristine sulfate were purchased from Sigma-Aldrich/RBI (St. Louis, MO, USA) and Tocris Bioscience (Ellisville, MO, USA). Imatinib mesylate was purchased from Selleck Chemical LLC (Houston, TX, USA). All drugs were used as received without further treatment or purifications. The preparation and standardization of titrants (0.5 M HCl and KOH) follow the procedure described elsewhere [13,21].

2.2. $p K_{a}$ measurement

The Gemini Profiler ${ }^{\mathrm{TM}}$ instrument with software version 3.2 ($p \mathrm{ION}$) was used to determine the ionization constants of many of the drugs at $\mathrm{p} K_{\mathrm{a}}$ at $37^{\circ} \mathrm{C}$ (and in some cases also at $25^{\circ} \mathrm{C}$), as identified in Table 1 . The instrument is equipped with three precision dispensers (capable of adding a minimum volume of $0.021 \mu \mathrm{~L}$) and a high-impedance ($10^{15} \Omega$) pH circuit. For each ionizable drug, at least three replicate titrations were performed at $25 \pm 0.5^{\circ} \mathrm{C}$
and/or $37 \pm 0.5^{\circ} \mathrm{C}$ in 0.15 M KCl medium. General details of the procedure have been described elsewhere [6,21,22]. The doublejunction combination pH electrode ($p \mathrm{ION}$) was standardized in situ using the Avdeef-Bucher four-parameter equation [21], in both aqueous and semi-aqueous titrations. As typical procedures, titrations of weak bases and ampholytes begin at low pH and those of weak acids begin at high pH over a range of $\mathrm{pH} 1.8-12.2$. The wide pH range is needed for the in situ electrode standardization procedure. This in situ procedure eliminates the need for a separate conventional blank titration [6,21]. A Teflon-coated magnetic stir disk was used to mix the solution during titrant addition. The solutions were bathed with argon to minimize the ingress of ambient carbon dioxide. The KOH or $\mathrm{HCl}(0.5 \mathrm{M})$ titrant is dispensed accurately and slowly into the solution, to produce about 0.15 pH increments between accepted pH readings. After titrant additions, careful measurements of pH were made until equilibration was established. Sample concentrations were in the range of about $0.1-1.0 \mathrm{mM}$, with the lower end used for compounds expected to be low in solubility.

Approximate $\mathrm{p} K_{\mathrm{a}}$ values were deduced graphically from Bjerrum plots, \bar{n}_{H}, vs. $\mathrm{pH}[6]$. The Bjerrum function, \bar{n}_{H}, is the average number of bound protons at a particular pH , and is defined by $\bar{n}_{\mathrm{H}}=\left([\mathrm{HCl}]-[\mathrm{KOH}]+n_{\mathrm{H}}[\right.$ drug $\left.]-\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]\right) /[$drug $]$, where n_{H} is number of dissociable protons introduced by drug, and square brackets designate concentrations. It is a property of Bjerrum plots that the pH at half integral value of \bar{n}_{H} is approximately equal to the $\mathrm{p} K_{\mathrm{a}}$.

These approximate $\mathrm{p} K_{\mathrm{a}}$ values were then refined by a weighted nonlinear least squares procedure in the Gemini Profiler software [6]. A unique feature of the software is that the $\mathrm{p} K_{\mathrm{a}}$ can be determined even if there is some precipitation of the drug during titration. Ignoring precipitation can lead to systematic $\mathrm{p} K_{\mathrm{a}}$ errors (positive bias for acids and negative bias for bases), as high as a log unit in some cases [6,12-14].

Since many of the drugs studied are practically insoluble in water, the cosolvent procedure $[6,23]$ was also used, where the apparent mixed-solvent $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{p}_{\mathrm{s}} K_{\mathrm{a}}\right)$ values determined at various ratios of cosolvent/water were extrapolated to zero-cosolvent to estimate the aqueous value. Three to six different cosolvent/water mixtures were used, typically in the interval $15-50 \mathrm{wt} \%$. Methanol or DMSO was used for titrations at $25^{\circ} \mathrm{C}$, but 1 -propanol or DMSO was used for titrations at $37^{\circ} \mathrm{C}$. The use of methanol (or similarly volatile solvents) for high temperature titrations is not recommended, since the steady rate of its evaporation leads to difficult-to-recognize systematic inaccuracies in the extrapolated values of the ionization constants [24].

For weak bases, the aqueous $\mathrm{p} K_{\mathrm{a}}$ was estimated from the linear extrapolation of $\mathrm{p}_{\mathrm{s}} K_{\mathrm{a}}$ vs. wt\% cosolvent to zero cosolvent [6,23]. However, for weak acids, the origin-shifted Yasuda-Shedlovsky procedure was used, which involves the extrapolation of $\mathrm{p}_{\mathrm{s}} K_{\mathrm{a}}+\log \left\{\left[\mathrm{H}_{2} \mathrm{O}\right] / 55.51\right\}$ vs. ($1 / \varepsilon-1 / \varepsilon_{0}$) to zero cosolvent, where [$\mathrm{H}_{2} \mathrm{O}$] is the molar concentration of water in the mixed-solvent (55.51 M at zero cosolvent) and ε is the dielectric constant of the mixed-solvent (ε_{0} at zero cosolvent). The latter acid-base differentiated procedure appears to be produce smaller bias with practically insoluble acids, compared to bases, as suggested in a comparative mixed-solvent study of 50 compounds by Völgyi et al. [23].

2.3. Literature $p K_{a}$ data used

In addition to the $\mathrm{p} K_{\mathrm{a}}$ values determined here, many values at 25 and $37^{\circ} \mathrm{C}$ were also taken from the open literature. For many of the simple molecules used, e.g., amino acids, carboxylic acid and amine buffers, $\mathrm{p} K_{\mathrm{a}}$ at various values of temperature and ionic strength were taken from multiple sources compiled in reliable databases

Table 1
Ionization constants and Abraham descriptors ${ }^{\text {a }}$.

Compounds	Type	$\Delta \mathrm{p} K_{\mathrm{a}}$ (obs)	$\Delta \mathrm{p} K_{\mathrm{a}}$ (calc)	$\mathrm{p} K_{\mathrm{a}}^{25}$	Ref ${ }^{25}$	$\mathrm{p} K_{\mathrm{a}}^{37}$	Ref ${ }^{37}$	$\Sigma \alpha_{2}^{\mathrm{H}}$ (A)	$\Sigma \beta_{2}^{\mathrm{H}}$ (B)	$\pi_{2}(\mathrm{~S})$	R_{2} (E)	McGowan volume (V_{x})
1,2-Diaminocyclohexane	B	-0.32	-0.25	6.34	[4]	6.02	[4]	0.44	1.15	0.90	0.61	1.05
1,3-Diamino-2-hydroxypropane	B	-0.32	-0.28	7.81	[4]	7.49	[4]	0.63	1.56	1.00	0.64	0.79
1,3-Diaminopropane	B	-0.37	-0.31	8.49	[4]	8.12	[4]	0.42	1.12	0.82	0.40	0.73
1,4-Diaminobutane	B	-0.36	-0.32	9.20	[4]	8.84	[4]	0.42	1.12	0.82	0.40	0.87
1,6-Diaminohexane	B	-0.41	-0.33	9.83	[4]	9.42	[4]	0.42	1.13	0.83	0.40	1.15
2,4,6-Trimethylpyridine	B	-0.26	-0.30	7.43	[30]	7.17	[30]	0.00	0.40	0.65	0.67	1.10
2,5-Dimethylimidazole	B	-0.30	-0.32	8.36	[30]	8.06	[30]	0.35	0.51	0.93	0.67	0.82
2-Amino-2-ethyl-1,3-propanediol	B	-0.35	-0.31	8.80	[30]	8.45	[30]	0.74	1.30	0.92	0.61	1.03
2-Amino-2-methyl-1,3-propanediol	B	-0.35	-0.31	8.79	[30]	8.44	[30]	0.74	1.30	0.91	0.61	0.89
2-Amino-2-methyl-1-propanol	B	-0.38	-0.34	9.69	[30]	9.31	[30]	0.46	0.98	0.66	0.40	0.83
2-Aminoquinoline	B	-0.30	-0.29	7.29	[4]	6.99	[4]	0.23	0.67	1.47	1.64	1.14
2-Naphthoic acid *	A	+0.15	-0.05	4.18	[41]	4.33	[24,41]	0.57	0.50	1.40	1.47	1.30
2-Nitroaniline	B	-0.05	-0.09	-0.26	[4]	-0.31	[4]	0.18	0.48	1.44	1.16	0.99
3,3-Dimethylglutaric acid (1)	A	+0.09	+0.07	3.70	[30]	3.79	[30]	1.14	0.73	1.01	0.32	1.24
3,3-Dimethylglutaric acid (2)	A	+0.07	+0.01	6.34	[30]	6.41	[30]	1.14	0.73	1.01	0.32	1.24
4-Aminopyridine	B	-0.34	-0.33	9.11	[30]	8.77	[30]	0.23	0.71	1.21	0.90	0.78
4-Hydroxymethlimidazole	B	-0.22	-0.26	6.39	[30]	6.17	[30]	0.66	0.92	1.19	0.87	0.74
4-Methylimidazole	B	-0.26	-0.30	7.52	[30]	7.26	[30]	0.35	0.51	0.99	0.64	0.68
4-Nitroanaline	B	-0.08	-0.11	1.00	[4]	0.92	[4]	0.28	0.53	1.65	1.13	0.99
5,5-Diethylbarbituric acid	A	-0.17	-0.10	7.98	[30]	7.81	[30]	0.52	1.21	1.35	0.98	1.37
6-Aminopurine (1)	X:B	-0.11	-0.02	4.15	[4]	4.04	[4]	0.60	0.98	1.79	1.74	0.92
ACES	B	-0.24	-0.20	6.80	[29]	6.56	[29]	0.93	1.79	2.41	0.85	1.23
Acetic acid	A	+0.00	+0.02	4.52	c	4.53	c	0.57	0.36	0.61	0.17	0.46
ADA	B	-0.13	-0.19	6.55	[28,29]	6.41	[28,29]	1.63	1.73	2.16	0.92	1.32
Alanine (2)	Z:B	-0.32	-0.30	9.87	[30]	9.55	[30]	0.78	0.93	0.92	0.38	0.71
Amitriptyline *	B	-0.32	-0.33	9.49	b	9.17	[47]	0.00	0.77	1.31	1.71	2.40
Ammonia	B	-0.36	-0.36	9.24	c	8.88		0.21	0.44	0.42	0.37	0.21
Aniline	B	-0.19	-0.22	4.61	[4]	4.41	[4]	0.23	0.43	1.08	0.86	0.82
Arginine (1)	Z:A	+0.00	-0.03	2.08	[27,28]	2.08	[27,28]	1.26	1.95	1.24	1.06	1.38
Arginine (2)	Z:B	-0.30	-0.30	9.05	[27,28]	8.75	[27,28]	1.26	1.95	1.24	1.06	1.38
Aspartic acid (1)	Z:A	-0.03	+0.01	1.92	[28]	1.90	[28]	1.18	1.26	1.37	0.55	0.92
Aspartic acid (2)	Z:A	-0.01	-0.05	3.67	[28]	3.67	[28]	1.18	1.26	1.37	0.55	0.92
Aspartic acid (3)	Z:B	-0.17	-0.28	9.63	[28]	9.46	[28]	1.18	1.26	1.37	0.55	0.92
Astemizole (1) **	B	-0.69	-0.20	5.95	[14]	5.28	b	0.13	1.64	2.70	3.10	3.56
Astemizole (2)*	B	-0.44	-0.27	8.77	[14]	8.34	b	0.13	1.64	2.70	3.10	3.56
Atenolol	B	-0.35	-0.28	9.54	[44]	9.19	[40]	0.78	1.85	1.97	1.48	2.18
Atomoxatine *	B	-0.25	-0.33	9.66	[47]	9.38	[47]	0.13	0.90	1.36	1.37	2.19
Benzoic acid	A	+0.00	-0.02	3.98	[25]	3.98	[25]	0.57	0.44	1.08	0.75	0.93
BES	B	-0.19	-0.21	7.09	[28,29]	6.90	[27,29]	0.79	2.02	1.96	0.92	1.51
β-Alanine (1)	Z:A	+0.09	-0.06	3.55	[27,28]	3.64	[27,28]	0.78	0.9	0.94	0.37	0.71
β-Alanine (2)	Z:B	-0.21	-0.31	10.18	[27,28]	9.97	[27,28]	0.78	0.9	0.94	0.37	0.71
Bicine	B	-0.18	-0.27	8.13	[28,29]	7.96	[28,29]	1.05	1.58	1.25	0.81	1.25
Boric acid	A	-0.09	-0.06	8.98	c	8.89	c	0.94	0.86	0.94	0.51	0.42
Butyric acid	A	+0.03	+0.02	4.67	[27,28]	4.70	[27,28]	0.57	0.36	0.62	0.17	0.75
Carbonic acid (1)	A	-0.06	+0.01	6.12	c	6.05	c	0.97	0.55	0.77	0.30	0.38
Carbonic acid (2)	A	-0.09	-0.08	9.88	c	9.79	c	0.97	0.55	0.77	0.30	0.38
Carvedilol **	B	+0.20	-0.24	8.06	[44]	8.25	b	0.62	2.09	3.00	3.08	3.10
Chloroacetic acid	A	+0.03	+0.06	2.88	[30]	2.91	[30]	0.79	0.36	0.76	0.30	0.59
Chloroquine (1)	B	-0.27	-0.28	8.37	[48]	7.99	b	0.13	1.29	1.63	1.85	2.63
Chloroquine (2)	B	-0.47	-0.34	10.76	[48]	10.10	b	0.13	1.29	1.63	1.85	2.63
Cholamine Chloride	B	-0.32	-0.27	6.97	[28,29]	9.64	[28,29]	0.21	0.61	0.42	-0.01	1.03
Cinnarizine*	B	-0.24	-0.26	7.69	[39]	7.45	[39]	0.00	1.37	2.12	2.43	3.11
Citric acid (1)	A	+0.04	+0.09	2.91	c	2.96	c	1.63	1.33	1.50	0.61	1.24
Citric acid (2)	A	+0.05	+0.06	4.34	c	4.39	c	1.63	1.33	1.50	0.61	1.24
Citric acid (3)	A	+0.11	+0.03	5.68	c	5.78	c	1.63	1.33	1.50	0.61	1.24
Codeine	B	-0.25	-0.28	8.24	[43]	7.99	b	0.23	1.58	1.92	2.16	2.21
Creatinine (1)	B	-0.18	-0.22	4.83	[49]	4.66	[50]	0.39	1.31	1.04	1.04	0.84
Creatinine (2)	A	0.03	-0.11	9.20	[49]	9.23	[50]	0.39	1.31	1.04	1.04	0.84
Diethanolamine	B	-0.30	-0.32	8.88	[30]	8.58	[30]	0.64	1.19	0.82	0.58	0.89
Diethylamine	B	-0.41	-0.39	10.93	[30]	10.52	[30]	0.13	0.48	0.35	0.15	0.77
Dimethylamine	B	-0.40	-0.39	10.77	[4,30]	10.37	[4,30]	0.13	0.47	0.34	0.16	0.49
Diphenhydramine	B	-0.23	-0.31	9.10	[51]	8.85	b	0.00	0.95	1.43	1.36	2.19
Dipyridamole -	B	-1.26	-0.18	6.17	[24]	4.93	[24]	0.95	3.03	2.9	3.74	3.87
Domperidone (1) *	X:B	-0.33	-0.22	7.29	[47]	6.91	b	0.72	1.83	3.13	3.11	3.06
Domperidone (2)*	X:A	-0.01	-0.07	9.69	[47]	9.68	b	0.72	1.83	3.13	3.11	3.06
Ephedrine	B	-0.26	-0.33	9.65	[25]	9.39	[30]	0.38	1.12	0.94	0.98	1.44
Ethanolamine	B	-0.34	-0.34	9.53	[27,28]	9.19	[27,28]	0.46	0.94	0.72	0.42	0.55
Ethanolisopropanolamine	B	-0.29	-0.31	8.81	[30]	8.52	[30]	0.64	1.22	0.81	0.59	1.03
Ethylamine	B	-0.38	-0.38	10.63	[4,30]	10.25	[4,30]	0.21	0.57	0.49	0.21	0.49
Ethylenediamine Tetraacetic acid (1)	X:B	-0.00	+0.11	0.58	[27,28]	0.58	[27,28]	2.29	2.35	2.33	1.00	2.01
Ethylenediamine Tetraacetic acid (2)	X:B	-0.06	+0.07	1.62	[27,28]	1.56	[27,28]	2.29	2.35	2.33	1.00	2.01
Ethylenediamine Tetraacetic acid (3)	X:A	+0.12	+0.05	2.06	[27,28]	2.17	[27,28]	2.29	2.35	2.33	1.00	2.01
Ethylenediamine Tetraacetic acid (4)	X:A	+0.09	+0.03	2.63	[27,28]	2.71	[27,28]	2.29	2.35	2.33	1.00	2.01
Ethylenediamine Tetraacetic acid (5)	X:A	-0.10	-0.11	6.12	[27,28]	6.02	[27,28]	2.29	2.35	2.33	1.00	2.01
Ethylenediamine Tetraacetic acid (6)	X:A	-0.22	-0.26	10.05	[27,28]	9.83	[27,28]	2.29	2.35	2.33	1.00	2.01

Table 1 (Continued)

Compounds	Type	$\Delta \mathrm{p} K_{\mathrm{a}}$ (obs)	$\Delta \mathrm{p} K_{\mathrm{a}}$ (calc)	$\mathrm{p} K_{\mathrm{a}}^{25}$	Ref ${ }^{25}$	$\mathrm{p} K_{\mathrm{a}}^{37}$	Ref ${ }^{37}$	$\Sigma \alpha_{2}^{\mathrm{H}}$ (A)	$\Sigma \beta_{2}^{\mathrm{H}}$ (B)	$\pi_{2}(\mathrm{~S})$	R_{2} (E)	McGowan volume (V_{x})
Ethylenediamine (1)	B	-0.31	-0.27	7.15	c	6.85	c	0.44	1.11	0.83	0.38	0.59
Ethylenediamine (2)	B	-0.33	-0.35	9.97	c	9.64	c	0.44	1.11	0.83	0.38	0.59
Fluoxetine *	B	-0.34	-0.33	9.96	[47]	9.62	[45]	0.31	0.78	1.19	1.01	2.24
Formic acid	A	+0.02	+0.03	3.52	[27,28]	3.54	[27,28]	0.57	0.34	0.67	0.20	0.32
Fumaric acid (1)	A	+0.00	+0.06	2.74	c	2.74	c	1.14	0.75	1.16	0.50	0.78
Fumaric acid (2)	A	+0.14	+0.03	4.03	c	4.17	c	1.14	0.75	1.16	0.50	0.78
Furosemide (1)	A	-0.07	-0.05	3.60	[23]	3.53	[40]	1.25	1.50	2.37	2.07	2.10
Furosemide (2)	A	-0.25	-0.19	10.15	[23]	9.90	[40]	1.25	1.50	2.37	2.07	2.10
Gabapentin (1)	Z:A	-0.21	-0.01	3.65	[58,59]	3.44	b	0.78	0.93	0.99	0.56	1.44
Gabapentin (2)	Z:B	-0.49	-0.27	10.73	[58,59]	10.24	b	0.78	0.93	0.99	0.56	1.44
γ-Aminobutyric acid	Z:B	-0.36	-0.32	10.56	[30]	10.20	[30]	0.78	0.91	0.94	0.37	0.85
Glibenclamide*	A	-0.28	-0.27	5.45	[14,39]	5.18	[39,40]	0.85	2.01	3.84	2.64	3.56
Glycerol-2-phosphoric acid	A	+0.00	+0.01	6.65	[30]	6.65	[30]	0.85	1.75	1.12	0.84	1.17
Glycinamide	B	-0.35	-0.29	8.20	[28,29]	7.85	[28,29]	0.70	1.12	1.41	0.62	0.61
Glycine (1)	Z:A	-0.04	-0.02	2.33	c	2.29		0.78	0.90	0.93	0.37	0.56
Glycine (2)	Z:B	-0.30	-0.30	9.60	c	9.30	c	0.78	0.90	0.93	0.37	0.56
Glycylglycine (1)	Z:A	-0.06	-0.03	3.23	[27-29]	3.16	[27-29]	1.04	1.46	1.81	0.68	0.96
Glycylglycine (2)	Z:B	-0.29	-0.22	8.14	[27-29]	7.86	[27-29]	1.04	1.46	1.81	0.68	0.96
Glycolic acid	A	+0.00	+0.06	3.60	c	3.60	c	0.74	0.63	0.67	0.30	0.52
Guanabenz * *	B	+0.10	-0.31	7.98	b	8.08	b	0.48	1.20	1.02	1.73	1.56
Haloperidol *	B	-0.32	-0.27	8.60	[51]	8.29	[40]	0.31	1.45	2.08	2.00	2.80
HEPES (1)	B	-0.17	-0.10	3.01	c	2.84	c	0.54	2.15	2.00	1.07	1.73
HEPES (2)	B	-0.17	-0.22	7.40	c	7.23	c	0.54	2.15	2.00	1.07	1.73
Hexamethylenediamine	B	-0.41	-0.36	10.93	[30]	10.52	[30]	0.42	1.13	0.83	0.40	1.15
Histamine (1)	B	-0.25	-0.24	6.15	[27,28]	5.89	[27,28]	0.56	1.05	1.31	0.84	0.92
Histamine (2)	B	-0.38	-0.34	9.84	[27,28]	9.46	[27,28]	0.56	1.05	1.31	0.84	0.92
Histidine (1)	Z:A	+0.18	+0.04	1.79	[27,28]	1.97	[27,28]	1.13	1.41	1.74	1.02	1.13
Histidine (2)	Z:B	-0.16	-0.12	6.08	[27,28]	5.91	[27,28]	1.13	1.41	1.74	1.02	1.13
Histidine (3)	Z:B	-0.33	-0.24	9.19	[27,28]	8.86	[27,28]	1.13	1.41	1.74	1.02	1.13
Hydrochlorothiazide (1)	A	-0.24	-0.24	8.75	[13]	8.54	[40]	1.01	1.76	2.77	2.15	1.73
Hydrochlorothiazide (2)	A	-0.18	-0.26	9.96	[13]	9.80	[40]	1.01	1.76	2.77	2.15	1.73
Hydroxproline	B	-0.28	-0.33	9.66	[30]	9.38	[30]	0.95	1.20	1.08	0.77	0.94
Imatinib (1)*	B	-0.15	-0.08	3.04	b	2.89	b	0.54	2.63	3.64	3.83	3.85
Imatinib (2) *	B	-0.36	-0.12	4.34	b	3.98	b	0.54	2.63	3.64	3.83	3.85
Imatinib (3)*	B	-0.15	-0.21	8.03	b	7.88	b	0.54	2.63	3.64	3.83	3.85
Imidazole	B	-0.25	-0.28	7.10	[27,28]	6.85	[27,28]	0.35	0.51	1.04	0.62	0.54
Imipramine *	B	-0.35	-0.32	9.52	b	9.18	[47]	0.00	0.95	1.59	1.81	2.40
Indomethacin*	A	-0.34	-0.14	4.45	$[39,47]$	4.13	[24,39]	0.57	1.24	2.49	2.44	2.53
Ketoprofen*	A	+0.01	-0.10	3.99	[50]	4.00	[40]	0.57	0.87	1.97	1.56	1.98
Labetolol (1)	Z:A	-0.03	-0.05	7.28	[13]	7.25	[40]	1.00	1.72	2.30	2.15	2.64
Labetolol (2)	Z:B	-0.24	-0.13	9.27	[13]	9.03	[40]	1.00	1.72	2.30	2.15	2.64
Lactic acid	A	+0.01	+0.06	3.75	c	3.76	c	0.74	0.66	0.66	0.31	0.66
Leucine (2)	Z:B	-0.31	-0.27	9.74	[30]	9.43	[30]	0.78	0.97	0.92	0.39	1.13
Maleic acid (1)	A	+0.10	+0.08	1.74	c	1.83	c	1.14	0.75	1.16	0.50	0.78
Maleic acid (2)	A	+0.18	-0.01	5.81	c	5.99	c	1.14	0.75	1.16	0.50	0.78
Malic acid (1)	A	+0.01	+0.07	3.25	c	3.26	c	1.14	0.99	1.10	0.47	0.88
Malic acid (2)	A	+0.09	+0.04	4.68	c	4.77	c	1.14	0.99	1.10	0.47	0.88
Malonic acid (1)	A	-0.08	+0.07	2.72	c	2.64	c	1.14	0.69	1.06	0.34	0.68
Malonic acid (2)	A	+0.04	+0.01	5.34	c	5.39	c	1.14	0.69	1.06	0.34	0.68
Maprotiline *	B	-0.27	-0.36	10.22	b	9.95	[47]	0.13	0.68	1.27	1.76	2.33
MES	B	-0.13	-0.20	5.99	c	5.86	c	0.31	1.49	1.76	0.70	1.34
Melphalan (1) *	Z:B	-0.21	-0.08	1.62	[53]	1.41	b	0.78	1.37	1.90	1.43	2.22
Melphalan (2)*	Z:A	+0.32	+0.12	2.32	[53]	2.64	b	0.78	1.37	1.90	1.43	2.22
Melphalan (3) *	Z:B	+0.10	-0.28	8.93	[53]	9.04	b	0.78	1.37	1.90	1.43	2.22
Methionine (1)	Z:A	+0.01	+0.02	2.11	[27,28]	2.11	[27,28]	0.78	1.06	1.08	0.72	1.15
Methionine (2)	Z:B	-0.28	-0.24	9.12	[27,28]	8.84	[27,28]	0.78	1.06	1.08	0.72	1.15
Methylamine	B	-0.38	-0.39	10.62	[30]	10.24	[30]	0.21	0.57	0.49	0.21	0.35
N,N-Dimethylglycine (1)	Z:A	+0.01	+0.00	2.07	[27,28]	2.07	[27,28]	0.57	0.86	0.80	0.34	0.85
N,N-Dimethylglycine (2)	Z:B	-0.18	-0.29	9.78	[27,28]	9.60	[27,28]	0.57	0.86	0.80	0.34	0.85
Nadolol	B	-0.40	-0.30	9.75	[46]	9.38	[40]	0.83	1.90	1.56	1.68	2.49
Naproxen *	A	+0.05	-0.04	4.09	[13]	4.14	[40]	0.57	0.75	1.49	1.54	1.78
n-Butylamine	B	-0.38	-0.38	10.64	[30]	10.26	[30]	0.21	0.58	0.50	0.20	0.77
Nitrilotriacetic acid (1)	Z:A	+0.01	+0.04	1.83	[27,28]	1.84	[27,28]	1.71	1.52	1.69	0.67	1.28
Nitrilotriacetic acid (2)	Z:A	+0.02	+0.02	2.46	[27,28]	2.48	[27,28]	1.71	1.52	1.69	0.67	1.28
Nitrilotriacetic acid (3)	Z:B	-0.13	-0.25	9.60	[27,28]	9.47	[27,28]	1.71	1.52	1.69	0.67	1.28
N -Me-Iminodiacetic acid (1)	Z:A	+0.03	+0.01	2.23	[27,28]	2.26	[27,28]	1.14	1.19	1.25	0.51	1.06
N -Me-Iminodiacetic acid (2)	Z:B	-0.23	-0.27	9.52	[27,28]	9.29	[27,28]	1.14	1.19	1.25	0.51	1.06
N -Ethylmorpholine	B	-0.26	-0.30	7.67	[30]	7.41	[30]	0.00	0.72	0.61	0.42	1.00
Omeprazole (1)*	X:A	+0.17	+0.07	4.14	[54]	4.31	b	0.35	2.05	3.18	2.67	2.52
Omeprazole (2) *	X:B	+0.43	-0.11	8.90	[54]	9.33	b	0.35	2.05	3.18	2.67	2.52
Oxalic acid (1) -	A	-1.07	+0.10	1.16	c	0.09	c	1.14	0.68	1.06	0.34	0.54
Oxalic acid (2)	A	-0.04	+0.04	3.87	c	3.83	c	1.14	0.68	1.06	0.34	0.54
Oxycodone *	B	-0.21	-0.28	8.94	[47]	8.73	b	0.23	1.80	2.28	2.18	2.26
n -Propylamine	B	-0.38	-0.38	10.57	[30]	10.19	[30]	0.21	0.58	0.50	0.20	0.63
Papavarine *	B	-0.17	-0.20	6.39	[26]	6.22	[40]	0.00	1.47	2.76	2.19	2.59
Pergolide **	B	+0.18	-0.33	9.41	[47]	9.62	b	0.31	1.01	1.48	2.22	2.54

Table 1 (Continued)

Compounds	Type	$\Delta \mathrm{p} K_{\mathrm{a}}$ (obs)	$\Delta \mathrm{p} K_{\mathrm{a}}($ calc $)$	$\mathrm{p} K_{\mathrm{a}}^{25}$	Ref ${ }^{25}$	$\mathrm{p} K_{\mathrm{a}}^{37}$	Ref ${ }^{37}$	$\Sigma \alpha_{2}^{\mathrm{H}}$ (A)	$\Sigma \beta_{2}^{\mathrm{H}}$ (B)	$\pi_{2}(\mathrm{~S})$	$R_{2}(\mathrm{E})$	McGowan volume (V_{x})
Perphenazine (1) *	B	+1.64	-0.15	3.72	[47]	5.39	b	0.23	1.84	2.33	2.87	3.02
Perphenazine (2) *	B	+0.03	-0.26	8.02	[47]	8.05	b	0.23	1.84	2.33	2.87	3.02
Phenazopyridine*	B	-0.35	-0.22	5.16	[12]	4.80	[24]	0.45	1.09	1.67	2.03	1.64
Phosphoric acid (1)	A	+0.02	+0.10	1.92	c	1.94	c	0.94	1.40	1.02	0.76	0.55
Phosphoric acid (2)	A	-0.01	-0.00	6.70	c	6.69	c	0.94	1.40	1.02	0.76	0.55
Phosphoric acid (3)	A	-0.10	-0.11	11.72	c	11.61	c	0.94	1.40	1.02	0.76	0.55
Phthalic acid (1)	A	+0.01	+0.03	2.72	c	2.73	c	1.14	0.77	1.46	0.94	1.15
Phthalic acid (2)	A	+0.07	-0.02	4.92	c	4.98	c	1.14	0.77	1.46	0.94	1.15
Piperazine (1)	B	-0.18	-0.24	5.55	[30]	5.37	[30]	0.29	0.89	0.63	0.48	0.76
Piperazine (2)	B	-0.25	-0.35	9.79	[30]	9.54	[30]	0.29	0.89	0.63	0.48	0.76
Piperidine	B	-0.37	-0.40	11.12	[4,27,28]	10.73	[4,27,28]	0.13	0.46	0.44	0.36	0.80
PIPES	B	-0.10	-0.16	6.76	[28,29]	6.66	[28,29]	0.63	2.55	2.94	1.11	2.01
Piroxicam (1) **	X:B	-0.48	+0.12	2.24	[26,55]	1.76	[40,55]	0.72	2.12	3.12	2.56	2.25
Piroxicam (2)*	X:A	-0.11	+0.01	5.07	[26,55]	4.96	[40,55]	0.72	2.12	3.12	2.56	2.25
Propionic acid	A	+0.01	+0.02	4.70	[27,28]	4.70	[27,28]	0.57	0.36	0.62	0.17	0.61
Propranolol *	B	-0.37	-0.32	9.53	[41,42,44]	9.16	[40]	0.29	1.36	1.44	1.76	2.15
Pyridine	B	-0.13	-0.24	5.22	[4]	5.09	[4]	0.00	0.40	0.82	0.60	0.68
Pyrilamine (1)	B	-0.37	-0.18	4.57	b	4.20	b	0.00	1.45	1.73	1.66	2.39
Pyrilamine (2)	B	-0.27	-0.30	9.12	b	8.85	b	0.00	1.45	1.73	1.66	2.39
Pyrrolidine	B	-0.38	-0.41	11.31	[4]	10.92	[4]	0.13	0.45	0.44	0.36	0.66
Quetiapine (1) **	B	+1.29	-0.12	2.27	[47]	3.56	[56]	0.23	2.01	1.93	2.72	2.91
Quetiapine (2)*	B	-0.47	-0.25	7.30	[47]	6.83	[56]	0.23	2.01	1.93	2.72	2.91
Salicylic acid (1)	A	-0.02	0.02	2.84	c	2.82	c	0.70	0.40	1.10	0.91	0.99
Salicylic acid (2)	A	-0.37	-0.21	13.25	c	12.88	c	0.70	0.40	1.10	0.91	0.99
Serine (2)	Z:B	-0.30	-0.29	9.21	[30]	8.91	[30]	1.03	1.30	1.15	0.6	0.76
Sertraline - *	B	-0.04	-0.32	9.07	[23]	9.03	[47]	0.13	0.67	1.44	1.83	2.26
Succinic acid (1)	A	-0.06	+0.03	3.99	c	3.93	c	0.97	0.69	1.06	0.34	0.82
Succinic acid (2)	A	+0.09	+0.00	5.21	c	5.30	c	0.97	0.69	1.06	0.34	0.82
Sulfuric acid	A	+0.14	+0.10	1.52	c	1.66	c	0.63	1.06	1.58	0.49	0.42
Tamoxifen *	B	-0.12	-0.28	8.48	[39]	8.36	[39]	0.00	1.11	1.85	2.06	3.17
Tartaric acid (1)	A	+0.11	+0.10	2.79		2.90	c	1.23	1.30	1.13	0.61	0.94
Tartaric acid (2)	A	+0.13	+0.08	3.90	c	4.03	c	1.23	1.30	1.13	0.61	0.94
Taurine (1)	Z:A	+0.00	+0.03	1.27	c	1.27	c	0.52	1.34	1.64	0.49	0.83
Taurine (2)	Z:B	-0.28	-0.26	8.84	c	8.56	c	0.52	1.34	1.64	0.49	0.83
TES	B	-0.24	-0.21	7.40	[29]	7.16	[29]	1.25	2.3	2.17	1.05	1.57
Tetraethylenepentamine (1)	B	-0.08	-0.12	3.32	[27]	3.24	[27]	0.88	2.44	1.40	0.77	1.73
Tetraethylenepentamine (2)	B	-0.22	-0.16	5.03	[27]	4.81	[27]	0.88	2.44	1.40	0.77	1.73
Tetraethylenepentamine (3)	B	-0.22	-0.25	8.27	[27]	8.05	[27]	0.88	2.44	1.40	0.77	1.73
Tetraethylenepentamine (4)	B	-0.25	-0.28	9.46	[27]	9.21	[27]	0.88	2.44	1.40	0.77	1.73
Tetraethylenepentamine (5)	B	-0.25	-0.28	9.66	[27]	9.40	[27]	0.88	2.44	1.40	0.77	1.73
Thioridazine ** *	B	-0.69	-0.33	9.77	[47]	9.08	b	0.00	1.13	1.93	2.70	2.90
Tolfenamic acid *	A	+0.77	-0.04	4.20	[57]	4.97	[39]	0.72	0.64	1.59	1.75	1.90
Triethanolamine	B	-0.24	-0.27	7.76	[30]	7.52	[30]	0.73	1.60	1.04	0.87	1.23
Triethylamine	B	-0.40	-0.38	10.72	[30]	10.32	[30]	0.00	0.53	0.37	0.17	1.05
Trimethylamine	B	-0.26	-0.37	9.80	[30]	9.54	[30]	0.00	0.53	0.36	0.17	0.63
Tris	B	-0.27	-0.28	8.13	c	7.86	c	1.01	1.62	1.16	0.82	0.95
Tris(2-aminoethyl)amine (1)	B	-0.30	-0.26	8.42	[27,28]	8.13	[27,28]	0.68	2.15	1.36	0.71	1.35
Tris(2-aminoethyl)amine (2)	B	-0.37	-0.29	9.50	[27,28]	9.14	[27,28]	0.68	2.15	1.36	0.71	1.35
Tris(2-aminoethyl)amine (3)	B	-0.27	-0.31	10.14	[27,28]	9.87	[27,28]	0.68	2.15	1.36	0.71	1.35
Verapamil *	B	-0.38	-0.22	9.06	[12]	8.68	[50]	0.00	1.89	3.00	1.76	3.79
Vinblastine (1)	B	-0.09	-0.10	5.49	[47]	5.40	b	0.54	4.01	3.72	4.46	6.07
Vinblastine (2)	B	-0.11	-0.15	7.68	[47]	7.57	b	0.54	4.01	3.72	4.46	6.07
Vincristine (1) \bullet	B	+0.64	-0.07	5.18	[47]	5.82	b	0.54	4.25	4.30	4.59	6.08
Vincristine (2)	B	+0.09	-0.13	7.48	[47]	7.57	b	0.54	4.25	4.30	4.59	6.08
Xipamide (1)	A	-0.17	-0.14	4.75	[52]	4.58	[45]	1.03	1.39	2.75	2.38	2.42
Xipamide (2) \bullet	A	+0.47	-0.26	10.00	[52]	10.47	[45]	1.03	1.39	2.75	2.38	2.42

(a) A: acid, B: base, X: ordinary ampholyte, Z: zwitterion. Ionization constants not used in model refinement are indicated by (\bullet). Ionization constants determined from cosolvent solutions are indicated by $\left(^{*}\right.$). Ionization constants at 0.15 M ionic strength (KCl). (b) This work. (c) From database in Gemini Profiler v3.2 software.
[25-30]. To interpolate the values at 25 and $37^{\circ} \mathrm{C}, 0.15 \mathrm{M}$ ionic strength, the literature data were fitted to a generic equation in the Gemini Profiler software. For the most common buffers, a built-in feature in the Gemini Profiler software allows for the $\mathrm{p} K_{\mathrm{a}}$ values to be generated automatically. The literature values and those determined here are listed in Table 1.

2.4. $p K_{a}$ temperature effect model equation

The classical treatment of the temperature dependence of the ionization process begins with the Gibbs free energy relationship

$$
\begin{equation*}
\Delta G=\Delta H-T \Delta S \tag{1}
\end{equation*}
$$

For a system at equilibrium, the relationship between the free energy and the $\mathrm{p} K_{\mathrm{a}}$ is
$\Delta G^{\circ}=-R T \ln K_{\mathrm{a}}=2.303 R T \mathrm{p} K_{\mathrm{a}}$
where ΔG° is the free energy change associated with ionization when all the reactants and products are in their standard states. Combining Eqs. (1) and (2) gives
$\mathrm{p} K_{\mathrm{a}}=-\frac{\Delta S^{\circ}}{2.303 R}+\left(\frac{\Delta H^{\circ}}{2.303 R}\right) \times \frac{1}{T}$
Since ΔS° and ΔH° are usually temperature dependent, the plot of $\mathrm{p} K_{\mathrm{a}}$ vs. T^{-1} often shows curvature. For many molecules, ΔS° values depend on temperature linearly. Simple weak acids show the
most negative slopes, while bases show slightly positive slopes [37]. If consideration is confined to a relatively small temperature range, e.g., $25-37^{\circ} \mathrm{C}$, the temperature dependence may be approximated by the linear equations
$\Delta S^{\circ}(T)=\Delta S^{\circ}{ }_{25}+b_{0}\left(T-T_{1}\right)$
$\Delta H^{\circ}(T)=\Delta H^{\circ}{ }_{25}+b_{1}\left(T-T_{1}\right)$
where $T_{1}=298.15 \mathrm{~K}\left(25{ }^{\circ} \mathrm{C}\right)$. Sample values of b_{0} and b_{1} for well-known molecules may be deduced from thermodynamic constants in the Handbook of Biochemistry [37] - propionic acid: $b_{0}=-0.527 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}$ and $b_{1}=-161.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$; piperidine: $b_{0}=+0.291 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}$ and $b_{1}=+89.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

With the above linear relationships, Eq. (3) can be expressed at the two temperatures of interest.
$\mathrm{p} K_{\mathrm{a}}^{37}=-\frac{\Delta S^{\circ}{ }_{25}}{2.303 R}+\left(\frac{\Delta H^{\circ}{ }_{25}}{2.303 R}\right) \times \frac{1}{T_{2}}-\frac{b_{0} \Delta T}{2.303 R}+\frac{b_{1} \Delta T}{2.303 R T_{2}}$
$\mathrm{p} K_{\mathrm{a}}^{25}=-\frac{\Delta S^{\circ}{ }_{25}}{2.303 R}+\left(\frac{\Delta H^{\circ}{ }_{25}}{2.303 R}\right) \times \frac{1}{T_{1}}$
where $T_{2}=310.15 \mathrm{~K}\left(37^{\circ} \mathrm{C}\right)$. The difference between Eqs. (5a) and (5b) produces an expanded form of the van't Hoff equation,
$\left(\frac{\Delta \mathrm{p} K_{\mathrm{a}}}{\Delta T}\right)=-\left(\frac{\Delta H^{\circ}{ }_{25}}{2.303 R T_{1} T_{2}}\right)-\frac{b_{0}}{2.303 R}+\frac{b_{1}}{2.303 R T_{2}}$
where $\Delta \mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{37}-\mathrm{p} K_{\mathrm{a}}^{25}$ and $\Delta T=T_{2}-T_{1}$. With the aid of Eq. (3), an entropy-based equation is produced
$\Delta \mathrm{p} K_{\mathrm{a}}=k_{0} \mathrm{p} K_{\mathrm{a}}^{25}-k_{1} \Delta S^{\circ}{ }_{25}+g\left(b_{0}, b_{1}\right)$
where the theoretical constants, $k_{0}=-\Delta T / T_{2}=-0.03869$, $k_{1}=-\Delta T / 2.3 R T_{2}=-0.00202$, and the gradient function, $g\left(b_{0}, b_{1}\right)=-b_{0} \Delta T / 2.3 R+b_{1} \Delta T / 2.3 R T_{2}=-0.626 b_{0}+0.00202 b_{1}$. For example, propionic acid and piperidine are characterized by $g\left(b_{0}, b_{1}\right)=+0.0041$ and -0.0014 (dimensionless), respectively [37]. Since $\Delta S^{\circ}{ }_{25}, b_{0}$, and b_{1} are not known for new chemical entities (NCE), a strategy was developed to estimate their contribution from the 2D structure of the NCE, using the Abraham linear free energy solvation descriptors [20].

2.5. Abraham LFER descriptors and the design equation

The proton transfer reaction leading to increased ionization (e.g., particularly with simple weak acids) induces substantial rearrangements in hydrogen-bonded water structure surrounding the reactants $[6,29,30]$. On ionization, entropy usually decreases, with underlying nonlinear heat capacity effects [31-36]. The structure of water becomes more ordered in the presence of the strong electric field arising from charged solute molecules. The molecular volume of charged molecules can affect the temperature dependence, since entropy of hydration of ions decreases with increasing effective ionic hydration radius [2,3]. When the charge is highly delocalized over the surface of the solute, as in some aromatic ions (e.g., rhodamine 123), the solute-solvent interactions are weakened and entropy is affected less. Solute H -bonds and those of the solvent can also lead to a tighter solvation layer surrounding the solute. The weaker van der Waal dispersion forces from the aromatic and/or lone pair electrons can lead to further stabilization of the solvation layer surrounding the solute. Many of these factors are encoded in the Abraham solvation descriptors [20]. It is noteworthy to mention that lots of alternative approaches have been described in the literature, like empirical models [62] and ab initio [63] models. However, it is reasonable to use a more practical approach, as with the Abraham descriptors [20], in order to be able to predict large numbers of molecules cost effectively.

Abraham's [20] five LFER solvation descriptors were applied to approximate the second and third terms in Eq. (7), resulted in the
design equation:

$$
\begin{align*}
\Delta \mathrm{p} K_{\mathrm{a}}= & k_{0} \times \mathrm{p} K_{\mathrm{a}}^{25}+c_{0}+c_{1} \times \sum \alpha_{2}^{\mathrm{H}}+c_{2} \\
& \times \sum \beta_{2}^{\mathrm{H}}+c_{3} \times \pi_{2}+c_{4} \times R_{2}+c_{5} \times V_{\mathrm{x}} \tag{8}
\end{align*}
$$

where $k_{0}, c_{0}, c_{1}, \ldots, c_{5}$ are the MLR coefficients, and where $\sum \alpha_{2}^{\mathrm{H}}$ (also called A) and $\sum \beta_{2}^{\mathrm{H}}$ (also called B) are the solute H -bond acidity and basicity, respectively, π_{2} (also called S) is the solute polarity/polarizability due to solute-solvent interactions between bond dipoles and induced dipoles, $R_{2}\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} / 10\right.$; also called E) is the excess molar refraction, which models dispersion force interaction arising from pi- and n-electrons of the solute, and V_{x} is the McGowan molar volume ($\mathrm{dm}^{3} \mathrm{~mol}^{-1} / 100$) of the solute.

The Abraham descriptor calculation and the computational model testing used the Algorithm Builder v1.8 and ADME Boxes v4.9 programs [38] from Advanced Chemistry Development (Toronto, Canada).

2.6. Model validation

The MLR model developed in this study, based on the design Eq. (8), was validated by two variants of the "leave-one-out" (LOO) method, and the "leave-many-out" (LMO) method, using the Algorithm Builder program [38]. The cross-validation strategy was applied to the 187 pairs of measured $\mathrm{p} K_{\mathrm{a}}^{25}$ and $\mathrm{p} K_{\mathrm{a}}^{37}$ in the training set, and the cross-validated q^{2} was used to assess model predictivity. The LOO approach randomly taking out one measurement each time. The LMO approach, randomly excluded 20% of the dependent variables of the measurements in 100 different repeated combinations.

3. Results and discussion

3.1. $p K_{a}$ determination

Table 1 lists the $207 \mathrm{p} K_{\mathrm{a}}$ values at $25^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ of 143 compounds selected for the study. Included are 34 acids ($53 \mathrm{p} K_{\mathrm{a}}$ values), 85 bases ($105 \mathrm{p} K_{\mathrm{a}}$ values), and 24 amphoteric molecules ($49 \mathrm{p} K_{\mathrm{a}}$ values). Original determinations of $\mathrm{p} K_{\mathrm{a}}$ in this study included 9 values at $25^{\circ} \mathrm{C}$ and 31 values at $37^{\circ} \mathrm{C}$. Most of the other $\mathrm{p} K_{\mathrm{a}}$ values at $37^{\circ} \mathrm{C}$ were also determined in our laboratory and have been published elsewhere (Table 1). For compounds determined in aqueous solution in the absence of cosolvent, the estimated standard deviation (SD) was 0.01 in 61% of the cases, with the rest ranging 0.02-0.09. When cosolvent titrations were done, the SD values were somewhat higher: methanol, 1-propanol, and DMSO indicated average $\mathrm{SD}=0.04-0.07$ (SD range 0.01-0.2).

Fig. 1 a shows the Bjerrum plot for vinblastine, a water-soluble dibasic drug. Three replicate titrations are shown. At $\bar{n}_{\mathrm{H}}=1.5$, the pH 5.40 , which is a good estimate of the value of $\mathrm{p} K_{\mathrm{a} 1}$. At $\bar{n}_{\mathrm{H}}=0.5$, the pH 7.57 , which corresponds to $\mathrm{p} K_{\mathrm{a} 2}$. Fig. 1b shows a more complicated Bjerrum plot for chloroquine at three different concentrations. Above pH 9.5 , the sparingly soluble compound precipitated, as indicated by the shift of points from the thick solid line in the $\mathrm{pH} 9.5-11$ region. When precipitation occurs, it would be erroneous to equate pH to $\mathrm{p} K_{\mathrm{a} 2}$ at $n_{\mathrm{H}}=0.5$, and errors as large as a \log unit would occur. As a unique capability, the refinement program in the Gemini Profiler instrument can simultaneously determine the solubility constant ($81 \mu \mathrm{~g} \mathrm{~mL}^{-1}$) as well as the correct $\mathrm{p} K_{\mathrm{a} 2}=10.10 \pm 0.03$.

Many of the drugs studied were only sparingly soluble, so the cosolvent method was used to estimate the $\mathrm{p} K_{\mathrm{a}}$ values. Fig. 2 shows cosolvent plots for an acid (indomethacin) and a base (imipramine), indicating the extrapolated aqueous $\mathrm{p} K_{\mathrm{a}}$ at zero cosolvent by two

Fig. 1. Bjerrum plots at $37^{\circ} \mathrm{C}$ for (a) vinblastine (three titrations, $0.25-0.28 \mathrm{mM}$) and (b) chloroquine (three titrations, $1.06-1.27 \mathrm{mM}$). Chloroquine precipitated above pH 9.5.
different popular methods. Usually, acids have positive slopes and bases have negative slopes [6]. The unfilled symbols correspond to the simple extrapolation of $\mathrm{p}_{\mathrm{s}} K_{\mathrm{a}}$ vs. wt\% cosolvent (upper horizontal scale). This approach appears most suitable for weak bases,
as indicated by a comparative study by Völgyi et al. [23]. The filled symbols correspond to the Yasuda-Shedlovsky plots $[6,23]$, $\mathrm{p}_{\mathrm{s}} K_{\mathrm{a}}+\log \left\{\left[\mathrm{H}_{2} \mathrm{O}\right] / 55.51\right\}$ vs. $\left(1 / \varepsilon-1 / \varepsilon_{0}\right)$. This approach appears to show least bias when applied to weak acids [23]. The two types of extrapolation show nearly the same result when the data contain points near zero cosolvent, but can show substantial differences when the extrapolations draw on data far from zero cosolvent, as in Fig. 2d.

3.2. Abraham LFER and the $p K_{a}$ prediction model

The initial $207 \mathrm{p} K_{\mathrm{a}}$ pairs were separated into three classes: acids (25\%), bases (51\%) and amphoteric compounds (24\%). Each class was separately analyzed according to Eq. (8).

With three outliers (oxalic acid $\mathrm{p} K_{\mathrm{a} 1}$, xipamide $\mathrm{p} K_{\mathrm{a} 2}$, tolfenamic acid) removed from the acids class, the MLR converged with the statistics $r^{2}=0.60, s=0.084, F=11, n=50$. The MLR coefficients are listed in Table 2. Due to the negative contribution of the $\mathrm{p} K_{\mathrm{a}}$ coefficient, k_{0}, a high value of $\mathrm{p} K_{\mathrm{a}}^{25}$ contributes to a more negative value of $\Delta \mathrm{p} K_{\mathrm{a}}$. For example, salicylic acid with a $\mathrm{p} K_{\mathrm{a}}^{25}$ of 13.3 contributes -0.29 to the $\Delta \mathrm{p} K_{\mathrm{a}}$. At the other end of the range, maleic acid with a $\mathrm{p} K_{\mathrm{a} 1}^{25}$ of 1.7 changes $\Delta \mathrm{p} K_{\mathrm{a}}$ by only -0.04 . The average entropy contribution to $\Delta \mathrm{p} K_{\mathrm{a}}$, predicted by MLR coefficients (Table 2) of the Abraham descriptors, is +0.10 (range -0.15 to +0.16). According to the values of the Abraham H-bond descriptors, large amounts of hydrogen bonding cause $\Delta \mathrm{p} K_{\mathrm{a}}$ to take on more positive values. Also, the bigger the acid molecule, the more positive is $\Delta \mathrm{p} K_{\mathrm{a}}$. Dipolarity causes values of $\Delta \mathrm{p} K_{\mathrm{a}}$ to become more negative. The average $\Delta \mathrm{p} K_{\mathrm{a}}$ in the acids class is -0.02 ; the measured values range from -0.37 (salicylic acid $\mathrm{p} K_{\mathrm{a} 2}$) and -0.34 (indomethacin) to +0.15 (2-naphthoic acid) and +0.18 (maleic acid $\mathrm{p} K_{\mathrm{a} 2}$).

Out of $105 \mathrm{p} K_{\mathrm{a}}$ pair values for bases, 12 were found to be outliers (astemizole $\mathrm{p} K_{\mathrm{a} 1}$, carvedilol, dipyridamole, guanabenz, imitanib $\mathrm{p} K_{\mathrm{a} 2}$, pergolide, perphenazine both $\mathrm{p} K_{\mathrm{a}}$, quetiapine $\mathrm{p} K_{\mathrm{a} 1}$, sertraline, thioridazine, and vincristine $\mathrm{p} K_{\mathrm{a} 1}$). When removed from the

Fig. 2. Cosolvent plots for an acid (indomethacin) and a base (imipramine), indicating the extrapolated aqueous $\mathrm{p} K_{\mathrm{a}}$ at zero cosolvent by two different popular methods. The unfilled symbols correspond to the simple extrapolation of $p_{s} K_{\mathrm{a}}$ vs. wt\% cosolvent (upper horizontal scale). The filled symbols correspond to the origin-shifted Yasuda-Shedlovsky plots [6,23], $p_{s} K_{\mathrm{a}}+\log \left\{\left[\mathrm{H}_{2} \mathrm{O}\right] / 55.51\right\}$ vs $\left(1 / \varepsilon-1 / \varepsilon_{0}\right)$.

Table 2
Abraham solvation descriptor MLR coefficients. ${ }^{\text {a }}$

Class	k_{0}	C_{0}	$c_{1}\left(\sum \alpha_{2}^{\mathrm{H}}\right)$	$c_{2}\left(\sum \beta_{2}^{\mathrm{H}}\right)$	$c_{3}\left(\pi_{2}\right)$	$c_{4}\left(R_{2}\right)$	$C_{5}\left(V_{x}\right)$	r^{2}	S	F	n	Outliers
Acids	-0.022	0.123	0.093	0.045	-0.145	0.004	0.028	0.60	0.084	11	50	3
Bases	-0.026	-0.136	0.008	0.018	0.035	-0.032	0.020	0.55	0.072	17	93	12
Ampholytes	-0.038	0.051	0.011	-0.103	0.060	0.002	0.075	0.74	0.091	18	44	5
Merged								0.80	0.076	750	187	20

${ }^{\text {a }}$ Model equation: $\Delta p K_{\mathrm{a}}=k_{0} \times p K_{\mathrm{a}}^{25}+c_{0}+c_{1} \times \Sigma \alpha_{2}^{\mathrm{H}}+c_{2} \times \Sigma \beta_{2}^{\mathrm{H}}+c_{3} \times \pi_{2}+c_{4} \times R_{2}+c_{5} \times V_{x}$.
bases class, the MLR converged with the statistics $r^{2}=0.55, s=0.072$, $F=17, n=93$ (Table 2). As with acids, due to the negative contribution of the $\mathrm{p} K_{\mathrm{a}}$ coefficient, k_{0}, a high value of $\mathrm{p} K_{\mathrm{a}}^{25}$ contributes to a more negative value of $\Delta \mathrm{p} K_{\mathrm{a}}$. Many amines with a $\mathrm{p} K_{\mathrm{a}}^{25}>10$ decrease the $\Delta \mathrm{p} K_{\mathrm{a}}$ by at least -0.22 . At the other end of the range, 2 -nitroaniline with a $\mathrm{p} K_{\mathrm{a}}^{25}$ of -0.26 changes $\Delta \mathrm{p} K_{\mathrm{a}}$ by +0.01 . The average entropy contribution, predicted by Abraham descriptors, is -0.06 (range -0.12 to +0.07), a decrease of 0.16 units from the acids values. According to the values of the MLR coefficients of the Abraham H-bond descriptors, large amounts of hydrogen bonding cause $\Delta \mathrm{p} K_{\mathrm{a}}$ to take on more positive values, just as with acids. Also, the larger the acid, the more positive is $\Delta \mathrm{p} K_{\mathrm{a}}$. Increased dipolarity causes values of $\Delta \mathrm{p} K_{\mathrm{a}}$ to become more positive. Dispersion forces lead to a negative contribution. The average $\Delta \mathrm{p} K_{\mathrm{a}}$ in the bases class is -0.28 ; the values range from -0.47 (chloroquine $\mathrm{p} K_{\mathrm{a} 2}$) to +0.09 (vincristine $\mathrm{p} K_{\mathrm{a} 2}$).

Out of $49 \mathrm{p} K_{\mathrm{a}}$ pair values for ampholytes, five were found to be outliers (domperidone $\mathrm{p} K_{\mathrm{a} 1}$, melphalan $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 3}$, omeprazole $\mathrm{p} K_{\mathrm{a} 2}$, piroxicam $\mathrm{p} K_{\mathrm{a} 1}$). When removed from the ampholytes class, the MLR converged with the statistics $r^{2}=0.74, s=0.091, F=18$, $n=44$ (Table 2). The average entropy contribution to $\Delta \mathrm{p} K_{\mathrm{a}}$, predicted by Abraham descriptors, is +0.12 (range +0.05 to +0.30), similar to the value found with acids. Large H -bond acceptor strength causes $\Delta \mathrm{p} K_{\mathrm{a}}$ to take on more negative value, an effect opposite of that in the other two classes. Also, the larger the acid, the more positive is $\Delta \mathrm{p} K_{\mathrm{a}}$, a contribution more than three times larger than in the other two classes. Dipolarity causes values of $\Delta \mathrm{p} K_{\mathrm{a}}$ to become more positive. Dispersion forces also lead to a positive contribution. The average $\Delta \mathrm{p} K_{\mathrm{a}}$ in the acids class is -0.11 ; the values range from -0.49 (gabapentin $\mathrm{p} K_{\mathrm{a} 2}$) to +0.32 (melphalan $\mathrm{p} K_{\mathrm{a} 2}$). With both acid and base functionality, ampholytes have $\Delta \mathrm{p} K_{\mathrm{a}}$ values spread across a larger range of values (Fig. 3). Partly because of this, the r^{2} value is the highest of the three classes. Also, since most of the ampholytes are zwitterionic buffers or amino

Fig. 3. The predicted vs. experimental $\mathrm{p} K_{\mathrm{a}}$ difference between $37^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ values $\left(\Delta \mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{37}-\mathrm{p} K_{\mathrm{a}}^{25}\right)$ for $187 \mathrm{p} K_{\mathrm{a}}$ values. The individual class type analyses (acids, bases, ampholytes) using Abraham solvation descriptors (cf., Table 2) were merged in the plot. The statistics correspond to the merged sets (cf., Table 2). The filled square symbols correspond to bases; the unfilled square symbols refer to acids, and the filled circle symbols represent amphoteric compounds.
acids, whose $\mathrm{p} K_{\mathrm{a}}$ values are known to a very high precision, r^{2} is higher than those from the other two classes containing a higher proportion of drug molecules, whose $\mathrm{p} K_{\mathrm{a}}$ values are not known to the same level of precision.

Fig. 3 shows a plot of $\Delta \mathrm{p} K_{\mathrm{a}}$ observed vs. calculated by the individual classes. When the results are merged, the statistics are $r^{2}=0.80, s=0.076, F=749, n=187$. The bases tend to cluster around -0.3 , the acids tend to cluster around 0.0 , while ampholytes spread over the entire range of values.

3.3. Cross validation

The multiple linear regression model developed in this study, based on Eq. (8), was validated by two variants of the LOO method, using the Algorithm Builder V1.8 program [38]. The traditional LOO approach, with repetitive MLR calculation, each time randomly taking out one measured $\Delta \mathrm{p} K_{\mathrm{a}}$, produced the $q^{2}=0.798$. The LMO approach, where 20% of the dependent variables were randomly removed, with the MLR repeated 100 times, produced nearly the same $q^{2}=0.795$, with the q^{2} standard deviation of 0.049 . These values are only slightly less than the value of $r^{2}(0.80)$ determined by normal MLR analysis, suggesting internal robustness of the model.

3.4. Outliers

Table 1 labels the outliers with the dot symbol after the compound name. Several of the compounds were rejected from consideration due to very large experimental $\Delta \mathrm{p} K_{\mathrm{a}}$ shifts. For example, for astemizole, dipyridamole, perphenazine $\mathrm{p} K_{\mathrm{a} 1}$, quetiapine $\mathrm{p} K_{\mathrm{a} 1}$, thioridazine, tolfenamic acid, $\Delta \mathrm{p} K_{\mathrm{a}}=-0.69,-1.26$, $+1.64,+1.29,-0.69,+0.77$, respectively. The Abraham model could not predict these high values. All of the compounds are sparingly soluble, where in several cases, oligomeric aggregates appear to form in aqueous solution [60,61]. The formation of aggregates is highly temperature sensitive, and often, the apparent $\mathrm{p} K_{\mathrm{a}}$ value is altered by the formation of aggregates [60]. Some of the outliers, like carvedilol, had a $\Delta \mathrm{p} K_{\mathrm{a}}$ with the "wrong" sign. A very careful reexamination of the original titration data indicates high quality. It is not clear why this effect is observed; the formation of aggregates cannot be ruled out. Since many of the drugs studied are practically insoluble, highest precision determination of the $\mathrm{p} K_{\mathrm{a}}$ values by the cosolvent method was a challenge in some instances; some of these drug molecules were labeled as outliers for this reason. Other factors may have to do with the formation of stable five and/or six-membered ring intramolecular hydrogen bonds [64] in the proximity of the ionizable groups, as perhaps in the structures of oxalic, oxipamide, and tolfenamic acid, which may not follow the classical temperature dependence. Out of $207 \mathrm{p} K_{\mathrm{a}}$ values collected, 20 outliers still leaves enough measurements to develop a reasonably useful model for predicting $\mathrm{p} K_{\mathrm{a}}$ values at $37^{\circ} \mathrm{C}$ from known values at $25^{\circ} \mathrm{C}$.

4. Conclusion

We have developed a very simple model for predicting $\mathrm{p} K_{\mathrm{a}}$ values at the biologically relevant temperature of $37^{\circ} \mathrm{C}(0.15 \mathrm{M}$
ionic strength) from knowledge of the value at $25^{\circ} \mathrm{C}$, using the 2D structure of the drug-like molecule to calculate an approximate entropy contribution in the classical temperature-dependent $\mathrm{p} K_{\mathrm{a}}$ equation (Eq. (7)). This prediction model resulted in the statistics $r^{2}=0.80, s=0.076, n=187$. This investigation is expected to be a useful contribution, since $\mathrm{p} K_{\mathrm{a}}$ determinations are scarcely reported at $37^{\circ} \mathrm{C}$, and the use of $25^{\circ} \mathrm{C}$ values in biological applications, such as pH -dependent cell-based permeability measurements, or critical dissolution studies (usually performed at $37^{\circ} \mathrm{C}$), can potentially lead to somewhat biased in vivo-in vitro correlations.

Acknowledgements

Part of this work was supported by grant number R44MH75211 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health. We are grateful to Konstantin Tsinman ($p \mathrm{ION}$) for helpful comments about the manuscript.

References

[1] W.A. Ritschel, D.E. Fraske, H.A.K. Whitney Jr. (Eds.), Perspectives in Clinical Pharmacy, Drug Intelligence Publications, Hamilton, IL, 1972, pp. 325-367.
[2] H.S. Harned, B.B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd ed., Chapman and Hall, London, 1958.
[3] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd ed., Dover Publications, Inc., Mineola, NY, 1959.
[4] A. Albert, E.P. Serjeant, The Determination of Ionization Constants: A Laboratory Manual, 2nd ed., Chapman and Hall, London, 1971.
[5] W.H. Streng, D.L. Steward Jr., Ionization constants of an amino acid as a function of temperature, Int. J. Pharm. 61 (1990) 265-266.
[6] A. Avdeef, Absorption and Drug Development, Wiley-Interscience, Hoboken, NJ, 2003.
[7] R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.F. Camões, M.J.T. Milton, T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer, G.S. Wilson, Measurement of pH . Definitions, standards and procedures (IUPAC pH Recommendations 2002), Pure Appl. Chem. 74 (2002) 2169-2200.
[8] R.J. Prankerd. Critical compilation of $\mathrm{p} K_{\mathrm{a}}$ values for pharmaceutical substances, Profiles of Drug Substances, Excipients, and Related Methodology, Elsevier: Amsterdam, vol. 33, 2007, pp. 1-33.
[9] S. Valentiner, The solubility of the noble gases in water, Z. fur. Physik. 42 (1927) 253-264.
[10] A. Lannung, The solubilities of helium, neon and argon in water and some organic solvents, J. Am. Chem. Soc. 52 (1930) 67-80.
[11] D. Everett, W. Wynne-Jones, Thermodynamics of acid-base equilibria, Trans. Faraday Soc. 35 (1939) 1380-1401.
[12] A. Avdeef, Physicochemical profiling (permeability, solubility, charge state), Curr. Top. Med. Chem. 1 (2001) 277-351.
[13] A. Avdeef, C.M. Berger, C. Brownell, pH-metric solubility. 2. Correlation between the acid-base titration and the saturation shake-flask solubility-pH methods, Pharm. Res. 7 (2000) 85-89.
[14] S. Bendels, O. Tsinman, B. Wagner, D. Lipp, I. Parrilla, M. Kansy, A. Avdeef, PAMPA-excipient classification gradient maps, Pharm. Res. 23 (2006) 2525-2535.
[15] S. Winiwarter, N.M. Bonham, F. Ax, A. Hallberg, H. Lennernaäs, A. Karlen, Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data, J. Med. Chem. 41 (1998) 4939-4949.
[16] P. Stenberg, U. Norinder, K. Luthman, P. Artursson, Experimental and computational screening models for the prediction of intestinal drug absorption, J. Med. Chem. 44 (2001) 1927-1937.
[17] L. Eberson, Acidity and hydrogen bonding of carboxyl groups, in: S. Patai (Ed.), The Chemistry of Carboxylic Acids and Esters, 1st ed., Interscience Publishers, New York, 1969.
[18] R. Canari, A.M. Eyal, Temperature effect on the extraction of carboxylic acids by amine-based extractants, Ind. Eng. Chem. Res. 43 (2004) 7608-7617.
[19] D.D. Perrin, The effect of temperature on $\mathrm{p} K_{\mathrm{a}}$ values of organic bases, Aust. J. Chem. 17 (1964) 484-488.
[20] M.H. Abraham, Scales of hydrogen bonding - their construction and application to physicochemical and biochemical processes, Chem. Soc. Rev. 22 (1993) 73-83.
[21] A. Avdeef, J.J. Bucher, Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator, Anal. Chem. 50 (1978) 2137-2142.
[22] A. Avdeef, Weighting scheme for regression analysis using pH data from acidbase titrations, Anal. Chim. Acta 148 (1983) 237-244.
[23] G. Völgyi, R. Ruiz, K. Box, J. Comer, E. Bosch, K. Takács-Novák, Potentiometric $\mathrm{p} K_{\mathrm{a}}$ determination of water-insoluble compounds: validation study in a new cosolvent system, Anal. Chim. Acta 583 (2007) 418-428.
[24] A. Avdeef, K. Tsinman, O. Tsinman, N. Sun, D. Voloboy, Miniaturization of powder dissolution measurement and estimation of particle size, Chem. Biodivers. 6 (2009) 1796-1811.
[25] A. Avdeef, Sirius Technical Application Notes (STAN), vol. 1, Sirius Analytical Instruments, Ltd., UK, 1994.
[26] A. Avdeef, K.J. Box, Sirius Technical Application Notes (STAN), vol. 2, Sirius Analytical Instruments, Ltd., UK, 1995.
[27] L.G. Sillén, A.E. Martell, Stability Constants of Metal-Ion Complexes, The Chemical Society, London, 1964 (Special Publication No. 17).
[28] ACD $/ \mathrm{p} K_{\mathrm{a}}$ Database in ACD/ChemSketch v3.0, Advanced Chemistry Development Inc., Toronto, 1997.
[29] N.E. Good, G.D. Winget, W. Winter, T.N. Connolly, S. Izawa, R.M.M. Singh, Hydrogen ion buffers for biological research, Biochemistry 5 (1966) 467-477.
[30] D.D. Perrin, B. Dempsey, Buffers for pH and Metal Ion Control, Chapman and Hall, London, 1974.
[31] M. Blandamer, R. Robertson, J. Scott, An examination of the parameters describing the dependence of rate constants on temperature for solvolysis of various organic esters in water and aqueous mixtures, Can. J. Chem. 58 (1980) 772-776.
[32] M. Blandamer, R. Robertson, J. Scott, A. Vrielink, Evidence for the incursion of intermediates in the hydrolysis of tertiary, secondary and primary substrates, J Am. Chem. Soc. 102 (1980) 2585-2592.
[33] M. Blandamer, J. Burgess, P. Duce, R. Robertson, J. Scott, A re-examination of the effects of added solvent on the activation parameters for solvolysis of t-butyl chloride in water, J. Chem. Soc. Faraday Trans. I 77 (1981) 1999-2008.
[34] D. Grant, M. Mehdizadeh, A.-L. Chow, J. Fairbrother, Non-linear van't Hoff solubility temperature plots and their pharmaceutical interpretation, Int. J. Pharm. 18 (1984) 25-38.
[35] R. Prankerd, R. McKeown, Physico-chemical properties of barbituric acid derivatives. Part I. Solubility-temperature dependence for 5,5-disubstituted barbituric acids in aqueous solutions, Int. J. Pharm. 62 (1990) 37-52.
[36] R. Prankerd, Solid state properties of drugs. Part I and thermodynamic functions for solution from aqueous measurements, Int. J. Pharm. 84 (1992) 233-244.
[37] H.A. Sober (Ed.), Handbook of Biochemistry - Selected Data for Molecular Biology, 2nd ed., CRC Press, Cleveland, OH, 1970, pp. J-58-J-173.
[38] K. Lanevskij, P. Japertas, R. Didziapetris, A. Petrauskas, Ionization-specific prediction of blood-brain barrier permeability, J. Pharm. Sci. 98 (2008) 122-134.
[39] J.H. Fagerberg, O. Tsinman, N. Sun, K. Tsinman, A. Avdeef, C.A.S. Bergström, Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant dissolution media, Mol. Pharm. 7 (2010) 1419-1430.
[40] A. Avdeef, O. Tsinman, Miniaturized rotating disk intrinsic dissolution rate measurement: effects of buffer capacity in comparisons to traditional Wood's apparatus, Pharm. Res. 25 (2008) 2613-2627.
[41] A. Avdeef, High-throughput measurements of solubility profiles, in: B. Testa, H. van de Waterbeemd, G. Folkers, R. Guy (Eds.), Pharmacokinetic Optimization in Drug Research, Verlag Helvetica Chimica Acta: Zürich and Wiley-VCH, Weinheim, 2001, pp. 305-326.
[42] A. Avdeef, K.J. Box, J.E.A. Comer, C. Hibbert, K.Y. Tam, pH_metric \log P. 10. Determination of vesicle membrane-water partition coefficients of ionizable drugs, Pharm. Res. 15 (1997) 208-214.
[43] A. Avdeef, D.A. Barrett, P.N. Shaw, R.D. Knaggs, S.S. Davis, Octanol-, chloroform-, and PGDP-water partitioning of morphine-6-glucuronide and other related opiates, J. Med. Chem. 39 (1996) 4377-4381.
[44] G. Caron, G. Steyaert, A. Pagliara, F. Reymond, P. Crivori, P. Gaillard, P.-A. Carrupt, A. Avdeef, J. Comer, K.J. Box, H.H. Girault, B. Testa, Structure-lipophilicity relationships of neutral and protonated β-blockers, Part I: intra and intermolecular effects in isotropic solvent systems, Helv. Chim. Acta 82 (1999) 1211-1222.
[45] K. Balon, B.W. Mueller, B.U. Riebesehl, Determination of liposome partitioning of ionizable drugs by titration, Pharm. Res. 16 (1999) 802-806.
[46] A. Avdeef, C.M. Berger, pH-metric solubility, 3. Dissolution titration template method for solubility determination, Eur. J. Pharm. Sci. 14 (2001) 281-291.
[47] A. Avdeef, N. Sun, A new in situ brain perfusion flow correction method for lipophilic drugs based on the pH -dependent Crone-Renkin equation, Pharm. Res. 28 (2010) 517-530.
[48] G. Schill, Photometric determination of amines and quaternary ammonium compounds with bromothymol blue. Part 5. Determination of dissociation constants of amines, Acta Pharm. Suec. 2 (1965) 99-108.
[49] R.M.C. Dawson, Data for Biochemical Research, Clarendon Press, Oxford, 1959.
[50] A. Avdeef, K.Y. Tam, How well can the Caco-2/MDCK models predict effective human jejunal permeability? J. Med. Chem. 53 (2010) 3566-3584.
[51] C. Dagenais, A. Avdeef, O. Tsinman, A. Dudley, R. Beliveau, P-glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model, Eur. J. Pharm. Sci. 38 (2009) 121-137.
[52] F.W. Hemelmann, Untersuchungen met Xipamid (4-Chlor-5-sulfamoyl-2',6'salicyloxylidid). Teil I. Physicalisch-chemische und chemische Eigenschaften, Arzneim. -Forsch. 27 (1977) 2140-2143.
[53] K.Y. Tam, A. Avdeef, O. Tsinman, N. Sun, The permeation of amphoteric drugs through artificial membranes - an in combo absorption model based on paracellular and transmembrane permeability, J. Med. Chem. 53 (2010) 392-401.
[54] H. Wan, A.G. Holmen, Y. Wang, W. Lindberg, M. Englund, M.B. Nagard, R.A. Thompson, High-throughput screening of $\mathrm{p} K_{\mathrm{a}}$ values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry, Rapid Commun. Mass Spetrom. 17 (2003) 2639-2648.
[55] A. Avdeef, D. Voloboy, A. Foreman, Dissolution and solubility, in: B. Testa, H. van de Waterbeemd (Eds.), Comprehensive Medicinal Chemistry II, Elsevier, Oxford, UK, 2007, pp. 399-423.
[56] G. Völgyi, E. Baka, K. Box, J. Comer, K. Takács-Novák, Study of pH-dependent solubility of organic bases. Revisit of Henderson-Hasselbalch relationship, Anal. Chim. Acta 673 (2010) 40-46.
[57] T. Österberg, M. Svensson, P. Lundahl, Chromatogic retention of drug molecules on immobilized liposomes prepared from egg phospholipids and fro chemically pure phospholipids, Eur. J. Pharm. Sci. 12 (2001) 427-439.
[58] K. Box, J. Comer, T. Gravestock, J. Mole, pKa measurement using 50-100 $\mu \mathrm{L}$ aliquots from DMSO stock, no chromophore required, Poster, AAPS Natl Mtg (2008).
[59] Merck Index. 12th ed., 1996.
[60] A. Avdeef, Solubility of sparingly-soluble drugs, in: J. Dressman, C. Reppas (Eds.), Special Issue: The Importance of Drug Solubility, Adv. Drug Deliv. Rev. 59 (2007) 568-590.
[61] A. Avdeef, S. Bendels, O. Tsinman, M. Kansy, Solubility-excipient classification gradient maps, Pharm. Res. 24 (2007) 530-545.
[62] R. Liu, Water-Insoluble Drug Formulation, Interpharm Press, Denver, Colorado, 2002.
[63] A. Klamt, F. Eckert, M. Diedenhofen, M.E. Beck, First principles calculations of aqueous $\mathrm{p} K_{\mathrm{a}}$ values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the $\mathrm{p} K_{\mathrm{a}}$ scale, J. Phys. Chem. A 107 (2003) 9380-9386.
[64] A. Mohajeri, N. Shakerin, The gas-phase acidity and intramolecular hydrogen bonding in oxalic acid, J. Mol. Struct-Theochem. 711 (2004) 167-172.

[^0]: * Corresponding author. Tel.: +1 6173081381.
 ** Corresponding author.
 E-mail addresses: na.sun@novartis.com(N.Sun), alex@in-ADME.com(A.Avdeef).

